Extensions 1→N→G→Q→1 with N=C42 and Q=C18

Direct product G=N×Q with N=C42 and Q=C18
dρLabelID
C2×C4×C36288C2xC4xC36288,164

Semidirect products G=N:Q with N=C42 and Q=C18
extensionφ:Q→Aut NdρLabelID
C421C18 = C42⋊C18φ: C18/C3C6 ⊆ Aut C42726C4^2:1C18288,74
C422C18 = C422C18φ: C18/C3C6 ⊆ Aut C42366C4^2:2C18288,75
C423C18 = C2×C42⋊C9φ: C18/C6C3 ⊆ Aut C42363C4^2:3C18288,71
C424C18 = C9×C42⋊C2φ: C18/C9C2 ⊆ Aut C42144C4^2:4C18288,167
C425C18 = C9×C422C2φ: C18/C9C2 ⊆ Aut C42144C4^2:5C18288,176
C426C18 = C9×C4≀C2φ: C18/C9C2 ⊆ Aut C42722C4^2:6C18288,54
C427C18 = D4×C36φ: C18/C9C2 ⊆ Aut C42144C4^2:7C18288,168
C428C18 = C9×C4.4D4φ: C18/C9C2 ⊆ Aut C42144C4^2:8C18288,174
C429C18 = C9×C41D4φ: C18/C9C2 ⊆ Aut C42144C4^2:9C18288,177

Non-split extensions G=N.Q with N=C42 and Q=C18
extensionφ:Q→Aut NdρLabelID
C42.1C18 = C9×C8⋊C4φ: C18/C9C2 ⊆ Aut C42288C4^2.1C18288,47
C42.2C18 = C9×C4⋊C8φ: C18/C9C2 ⊆ Aut C42288C4^2.2C18288,55
C42.3C18 = Q8×C36φ: C18/C9C2 ⊆ Aut C42288C4^2.3C18288,169
C42.4C18 = C9×C42.C2φ: C18/C9C2 ⊆ Aut C42288C4^2.4C18288,175
C42.5C18 = C9×C4⋊Q8φ: C18/C9C2 ⊆ Aut C42288C4^2.5C18288,178

׿
×
𝔽